
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

61, 3, pp. 495-507, Warsaw 2023
https://doi.org/10.15632/jtam-pl/166562

A GRIFFITH CRACK MODEL IN A GENERALIZED NONHOMOGENEOUS

INTERLAYER OF BONDED DISSIMILAR HALF-PLANES

Aibing Zhang, Jia Lou

Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China

corresponding author Aibing Zhang, e-mail: zhangaibing@nbu.edu.cn

Baolin Wang

School of Engineering, Design and Built Environment, Western Sydney University, Penrith, Australia

Ji Wang

Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, China

The Griffith crack problem in bonded dissimilar half-planes is examined. To eliminate the
unrealistic oscillatory stress near the interface crack tips, the interfacial transition zone is
modeled by a very thin nonhomogeneous interlayer whose elastic properties vary contin-
uously between the bonded materials and adhesive material. The interlayer thickness is
assumed to be the sum of the maximum heights of asperities at the two bonded material
surfaces. The crack problem is reduced to a set of Cauchy integral equations which can be
solved numerically. The applicability of the generalized nonhomogeneous interlayer model is
investigated by comparing it with the classical interface crack model.
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1. Introduction

Interfaces are intrinsic to many modern composite materials since they are always layered. The
structural performance of such materials is generally dependent on their interfaces which are het-
erogeneities such as discontinuities in elastic and thermal properties as well as residual stresses.
Fracture mechanics of layered materials has been extensively used to characterize the initia-
tion and propagation of delamination (Hutchinson and Suo, 1992; Suo, 1990; Wang et al., 2021;
Zhang and Wang, 2016). The classical model for an idealized (or perfect) bonding bimaterial
structure containing an interface crack was established by Williams (1959) by assuming the
zero-thickness interface, which means that the stress and displacement vary continuously across
the interface. However, analytical solutions for interface crack problems show that there is an
oscillatory singularity which is physically unreasonable and results in material interpenetration
near the ends of the interface crack (England, 1965; Erdogan, 1965; Williams, 1959). In order
to eliminate the unrealistic oscillatory singularity, a closed crack tip model was developed by
Comninou (1977) based on classical solutions which assumed that the surfaces of interface crack
contact was frictionless near the tips. This model was further applied to interfacial fracture
analysis of anisotropic materials (Ayatollahi et al., 2022; Herrmann and Loboda, 1999), piezo-
electric materials (Govorukha et al., 2000; Sheveleva et al., 2015), thermopiezoelectric materials
(Qin and Mai, 1999). A modified interface dislocation model for interface fracture analysis was
presented by Zhang and Wang (2013), which represented an inverse square-root singularity at
the interface crack tips and avoided the oscillatory behavior.
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The idealized interface model for the fracture problem in bonded dissimilar homogeneous ma-
terials may be too unrealistic from the micromechanical point of view, and it does not capture
any effect of mechanical characteristics of the real transition layer (i.e., interlayer) between the
materials on the stress and displacement distribution. In fact, an interlayer forms whatever the
actual mechanism of binding is, and should be taken into account as a distinct chemical species
or a distinct phase. Physical properties in a thin interlayer are highly nonhomogeneous with the
steeply varying composition profile. The layer thickness ranges from nanometers to fractions of
a millimeter (Yang and Shih, 1994). Two attractive features emerge when the nonhomogeneous
interlayer model is used to the interface crack problems. Firstly, the stress oscillatory singularity
is removed so that the local mode mixity is independent of the distance ahead the crack tip.
Secondly, the conventional stress intensity factors (SIFs) can be defined as the crack problems
in a homogeneous medium. The nonhomogeneous interlayer model considering the interpene-
tration or interdiffusion of molecules in the interfacial zone was first theoretically developed by
Delale and Erdogan (1988) and successfully applied to fracture problems in bimaterial structures
(Erdogan et al., 1991; Ozturk and Erdogan, 1995). A more generalized interlayer model intro-
ducing a distribution parameter independent of interlayer thickness and material properties was
presented by Wang et al. (1996, 1997), and the Erdogan’s interlayer model could be obtained
when the distribution parameter tends to infinity.
On the other hand, there exist various roughnesses and asperities at each bonded material

surface, and the third material used as an adhesive may be filled with gaps between the surfaces
of two primary components as shown in Fig. 1a. As a result, a more generalized nonhomoge-
neous interlayer containing adhesive materials may also be emerged instead of the Erdogan’s
interlayer. The elastic constants of this nonhomogeneous interlayer are not only dependent on
the physical properties of bonded materials but also on those of the adhesive material. Thus,
the purpose of this paper is to develop a theoretical model of the Griffith crack in a generalized
nonhomogeneous interlayer considering the influence of surface roughness of bonded materials
and elastic properties of the adhesive material.

Fig. 1. The generalized nonhomogeneous interlayer model: (a) microstructures of the bonding zone
between two homogeneous elastic half-planes, (b) the effective nonhomogeneous interlayer

2. Mathematical model for a Griffith crack in a generalized nonhomogeneous

interlayer

2.1. Formulation of the generalized nonhomogeneous interlayer

Consider an interface mechanical problem in a bimaterial structure composed of two isotropic
and homogeneous materials with elastic moduli E1 and E2, and Poisson’s ratios ν1 and ν2. The
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thickness of the nonhomogeneous interlayer is assumed to be the sum of the maximum heights
of asperities at the two bonded material surfaces, assuming that the adhesive layer is much
thinner than the interlayer. It is noted that the assumption of the zero-thickness adhesive layer
is consistent with the classical model of interface mechanics (England, 1965; Erdogan, 1965;
Williams, 1959). In order to facilitate the complicated interfacial transition zone, a generalized
nonhomogeneous interlayer model with the thickness of h = h1 + h2 is developed as shown in
Fig. 1b. The mechanical properties of the interlayer may vary steeply, but it is crucial to maintain
continuity at the interfaces with the adjacent materials. Delale and Erdogan (1988) introduced an
interlayer model with material constants that exhibited an exponential variation, which ensured
an inverse square-root singularity at the crack tips and made the problem analytically tractable.
Therefore, in this paper, the material parameters along such an interlayer are assumed to be
only dependent on y, and the elastic modulus has a form of

Ejc(y) = Ece
λjy (2.1)

where j = 1, 2 and Ec is the elastic modulus of the adhesive material, subscripts 1c and 2c are
corresponding to regions 0 ¬ y ¬ h1 and −h2 ¬ y < 0, respectively. The parameter λj can be
determined from the continuity conditions for E1c(h1) = E1 and E2c(−h2) = E2, that is

λj =





1

h1
ln
E1
Ec

0 ¬ y ¬ h1

− 1
h2
ln
E2
Ec

−h2 ¬ y < 0
(2.2)

Introducing Airy stress functions Fjc(x, y) as

σjcxx =
∂2Fjc(x, y)

∂y2
σjcyy =

∂2Fjc(x, y)

∂x2
σjcxy = −

∂2Fjc(x, y)

∂x∂y
(2.3)

Considering that the functions Ejc and νjc are independent of x, the compatibility condition is
expressed as

∇4Fjc(x, y)− 2λj
∂

∂y
∇2Fjc(x, y) + λ2j

∂2Fjc(x, y)

∂y2

−
[d2νjc(y)

dy2
− 2λj

dνjc(y)

dy
+ λ2jνjc(y)

]∂2Fjc(x, y)
∂x2

= 0

(2.4)

It is known that Poisson’s ratios do not influence the SIFs significantly (Delale and Erdogan,
1983; 1988). Thus, we further assume that

∇4Fjc(x, y)− 2λj
∂

∂y
∇2Fjc(x, y) + λ2j

∂2Fjc(x, y)

∂y2
= 0

d2νjc(y)

dy2
− 2λj

dνjc(y)

dy
+ λ2jνjc(y) = 0

(2.5)

By means of Eq. (2.5)2, Poisson’s ratios are obtained as follows

νjc(y) = (νc + νj0y)e
λjy (2.6)

where ν10 = (Ecν1−E1νc)/(E1h1) and ν20 = −(Ecν2−E2νc)/(E2h2). Now, the elastic properties
and geometric dimensions of the generalized nonhomogeneous interlayer are totally determined.
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2.2. Griffith crack model in the generalized nonhomogeneous interlayer

Attention is now focused on the Griffith crack problem with a generalized nonhomogeneous
interlayer as shown in Fig. 2, where the physical length of the crack is designated by 2c. The
origin of the rectangular coordinate system x-y is fixed at the middle point of the crack and the
x-axis coincides with the crack line. The elastic properties are constant for y > h1 and y < −h2,
and the plane elasticity problem can be formulated by assuming that each material is perfectly
bonded along the planes y = h1, y = 0 and y = −h2 except for the crack.

Fig. 2. Geometry of the Griffith crack problem with a generalized nonhomogeneous interlayer

By using the Fourier transform technique, the solutions for Airy stress functions Fjc(x, y)
in the generalized nonhomogeneous interlayer and Fj(x, y) in the homogeneous materials have
forms of

Fjc(x, y) =
1

2π

∞∫

−∞

{
[Aj1(ξ) +Aj2(ξ)y]e

mj1y + [Aj3(ξ) +Aj4(ξ)y]e
mj2y
}
e−iξx dξ

Fj(x, y) =
1

2π

∞∫

−∞

[Bj1(ξ) +Bj2(ξ)y]e
−δj |ξ|y−iξx dξ

(2.7)

where Ajk(ξ) (k = 1, 2, 3, 4) and Bjl(ξ) (l = 1, 2) are unknown functions, mjk and δj are defined
as

mj1 = mj3 =
λj
2
−

√

ξ2 +
λ2j
4

mj2 = mj4 =
λj
2
+

√

ξ2 +
λ2j
4

δj =

{
−1 y > h1
1 y < −h2

(2.8)

By substituting Airy stress functions (2.7) into Eq. (2.3) and using the constitutive equations
and stain-displacement relations, the stress fields and displacements in the bimaterial structure
are obtained as follows
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σjcyy(x, y) = −
1

2π

∞∫

−∞

ξ2[(Aj1 +Aj2y)e
mj1y + (Aj3 +Aj4y)e

mj2y]e−iξx dξ

σjcxy(x, y) =
1

2π

∞∫

−∞

iξ
{
[mj1Aj1 + (1 +mj1y)Aj2]e

mj1y

+ [mj2Aj3 + (1 +mj2y)Aj4]e
mj2y
}
e−iξx dξ

σjcxx(x, y) =
1

2π

∞∫

−∞

{
[m2j1Aj1 + (2 +mj1y)mj1Aj2]e

mj1y

+ [m2j2Aj3 + (2 +mj2y)mj2Aj4]e
mj2y
}
e−iξx dξ

(2.9)

σjyy(x, y) = −
1

2π

∞∫

−∞

ξ2(Bj1 +Bj2y)e
−δj |ξ|y−iξx dξ

σjxy(x, y) =
1

2π

∞∫

−∞

iξ[−δj |ξ|Bj1 + (1− δj |ξ|y)Bj2]e−δj |ξ|y−iξx dξ

σjxx(x, y) =
1

2π

∞∫

−∞

[ξ2Bj1 + (ξ
2y − 2δj |ξ|)Bj2]e−δj |ξ|y−iξx dξ

(2.10)

ujcx (x, y) = −
1

2π

∞∫

−∞

1

iξEjc(y)

{[(
m2j1 + ξ

2νjc(y)
)
Aj1

+ [(2 +mj1y)mj1 + ξ
2yνjc(y)]Aj2

]
emj1y +

[(
m2j2 + ξ

2νjc(y)
)
Aj3

+ [(2 +mj2y)mj2 + ξ
2yνjc(y)]Aj4

]
emj2y

}
e−iξx dξ

ujcy (x, y) = −
1

2πEc

∞∫

−∞

{[( ξ2

mj1 − λj
e−λjy +mj1(νc + νj0y)− νj0

)
Aj1

+
((mj1 − λj)y − 1
(mj1 − λj)2

ξ2e−λjy + (νc + νj0y)mj1y + νc
)
Aj2
]
emj1y

+
[( ξ2

mj2 − λj
e−λjy +mj2(νc + νj0y)− νj0

)
Aj3

+
((mj2 − λj)y − 1
(mj2 − λj)2

ξ2e−λjy + (νc + νj0y)mj2y + νc
)
Aj2
]
emj2y

}
e−iξx dξ

(2.11)

ujx(x, y) = −
1

2πEj

∞∫

−∞

1

iξ

{
(1 + νj)ξ

2Bj1 + [(1 + νj)ξ
2y − 2δj |ξ|y]Bj2

}
e−δj |ξ|y−iξx dξ

ujy(x, y) =
1

2πEj

∞∫

−∞

{
(1 + νj)δj |ξ|Bj1 + [(1 + νj)δj |ξ|y − νj + 1]Bj2

}
e−δj |ξ|y−iξx dξ

(2.12)

The boundary conditions of the Griffith crack problem are expressed as

u1cx (x, 0) = u
2c
x (x, 0) u1cy (x, 0) = u

2c
y (x, 0) |x| > c

σ1cyy(x, 0) = σ
2c
yy(x, 0) σ1cxy(x, 0) = σ

2c
xy(x, 0) |x| <∞

σ1cyy(x, 0) = −p(x) σ1cxy(x, 0) = −q(x) |x| ¬ c
(2.13)
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and

u1cx (x, h1) = u
1
x(x, h1) u1cy (x, h1) = u

1
y(x, h1) |x| <∞

σ1cyy(x, h1) = σ
1
yy(x, h1) σ1cxy(x, h1) = σ

1
xy(x, h1) |x| <∞

(2.14)

and

u2cx (x,−h2) = u2x(x,−h2) u2cy (x,−h2) = u2y(x,−h2) |x| <∞
σ2cyy(x,−h2) = σ2yy(x,−h2) σ2cxy(x,−h2) = σ2xy(x,−h2) |x| <∞

(2.15)

where p(x) and q(x) are known functions.

2.3. Integral equations and stress intensity factors

We now introduce functions fj(x) at the crack plane

f1(x) =
∂

∂x
[u1cx (x, 0)− u2cx (x, 0)] f2(x) =

∂

∂x
[u1cy (x, 0)− u2cy (x, 0)] (2.16)

The stress and displacement on the crack line for a bimaterial structure can be obtained based
on Eqs. (2.9) and (2.11), then the functions Ajk(ξ) are determined by making use of boundary
conditions (2.13)-(2.15), and after some lengthy manipulations, we have

Ajk(ξ) = γ
jc
k1(ξ)g1(ξ) + γ

jc
k2(ξ)g2(ξ) (2.17)

where j = 1, 2, k = 1, 2, 3, 4, and

g1(ξ) = Ec

∞∫

−∞

f1(t)e
iξt dt g2(ξ) = Ec

∞∫

−∞

f2(t)e
iξt dt (2.18)

The functions γjck1(ξ) and γ
jc
k2(ξ) are not given here due to tediousness, and can be obtained

by solving 12 linear algebraic equations in terms of g1(ξ) and g2(ξ) based on the boundary
conditions. By substituting Airy functions Eqs. (2.7), and Eq. (2.17) into Eq. (2.3), the stresses
on the crack line are obtained as follows

σ1cyy(x, 0) = −
Ec
2π

c∫

−c

∞∫

−∞

[P11(ξ)f1(t) + P12(ξ)f2(t)]e
iξ(t−x) dξ dt

σ1cxy(x, 0) = −
Ec
2π

c∫

−c

∞∫

−∞

[P21(ξ)f1(t) + P22(ξ)f2(t)]e
iξ(t−x) dξ dt

(2.19)

where

P11(ξ) = ξ
2[γ1c11(ξ) + γ

1c
31(ξ)] P12(ξ) = ξ

2[γ1c12(ξ) + γ
1c
32(ξ)]

P21(ξ) = −iξ[m11γ1c11(ξ) + γ1c21(ξ) +m12γ1c31(ξ) + γ1c41(ξ)]
P22(ξ) = −iξ[m11γ1c12(ξ) + γ1c22(ξ) +m12γ1c32(ξ) + γ1c42(ξ)]

(2.20)

It should be noted that P11(ξ), P22(ξ) are even functions and P12(ξ), P21(ξ) are odd functions
with respect to ξ. In addition, the following asymptotic properties of P11(ξ), P12(ξ), P21(ξ) and
P22(ξ) are further given

lim
ξ→+∞

P12(ξ) = lim
ξ→+∞

P21(ξ) = −
1

4
lim
ξ→+∞

P11(ξ) = lim
ξ→+∞

P22(ξ) = 0 (2.21)
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Therefore, the Griffith crack problem with a generalized nonhomogeneous interlayer can be
reduced to the first kind singular integral equations based on the analysis of Eq. (2.21) rather
than the second kind ones which represent physically unreasonable stress oscillatory singularity
and lead to overlapping near the ends of the crack surfaces. Using boundary condition Eq.
(2.13)3, the Cauchy singular integral equations are obtained as follows

Ec
π

c∫

−c

[Q11(t, x)f1(t) +Q12(t, x)f2(t)] dt−
Ec
4π

c∫

−c

f2(t)

t− x dt = p(x)

Ec
π

c∫

−c

[Q21(t, x)f1(t) +Q22(t, x)f2(t)] dt−
Ec
4π

c∫

−c

f1(t)

t− x dt = q(x)
(2.22)

where

Q11(t, x) =

∞∫

0

P11(ξ) cos[ξ(t− x)] dξ Q12(t, x) =

∞∫

0

[
iP12(ξ) +

1

4

]
sin[ξ(t− x)] dξ

Q21(t, x) =

∞∫

0

[
iP21(ξ) +

1

4

]
sin[ξ(t− x)] dξ Q22(t, x) =

∞∫

0

P22(ξ) cos[ξ(t− x)] dξ
(2.23)

It is clear from condition (2.13)1 that

c∫

−c

f1(t) dt = 0

c∫

−c

f2(t) dt = 0 (2.24)

Integral Eqs. (2.22)-(2.24) can be solved numerically by using the method developed by
Erdogan (1975). Furthermore, the undetermined functions f1(x) and f2(x) are of conventional
inverse square-root singularity at x = ±c according to the singular integral equation theory.
Normalizing the interval (−c, c) by changing variables as t = ct̃ and x = cx̃, integral equations
of (2.22)-(2.24) have solutions in the following form

f1(t) =
H1(t̃)√
1− t̃2

=

∑n−1
i=0 D1iTi(t̃)√
1− t̃2

f2(t) =
H2(t̃)√
1− t̃2

=

∑n−1
i=0 D2iTi(t̃)√
1− t̃2

(2.25)

where H1(t̃) and H2(t̃) are continuous bounded functions defined in the interval |t̃| ¬ 1, Ti(t̃) is
the first kind Chebyshev polynomial, and the coefficients D1i and D2i are constants as yet to be
determined. After discretization, the singular integral equations can be rewritten as

Ec
n

n∑

k=1

[
Q11(t̃k, x̃r)H1(t̃k) +Q12(t̃k, x̃r)H2(t̃k)−

H2(t̃k)

4(t̃k − x̃r)
]
= p(x̃r)

Ec
n

n∑

k=1

[
Q21(t̃k, x̃r)H1(t̃k) +Q22(t̃k, x̃r)H2(t̃k)−

H1(t̃k)

4(t̃k − x̃r)
]
= q(x̃r)

n∑

k=1

H1(t̃k) = 0
n∑

k=1

H2(t̃k) = 0

(2.26)

where the discretization points t̃k and x̃r are defined by

t̃k = cos
(2k − 1
2n

π
)

k = 1, 2, . . . , n

x̃r = cos
( r
n
π
)

r = 1, 2, . . . , n− 1
(2.27)
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The equation system in (2.26) includes 2n linear algebraic equations in terms of H1(t̃k) and
H2(t̃k), and the coefficients D1i and D2i can be easily solved. The SIFs at the crack tip are of
interest and are defined as

K1(c) =
√
2π(x− c)σ1cyy(x, 0) = −

Ec
4

√
πc
n−1∑

i=1

D2i

K2(c) =
√
2π(x− c)σ1cxy(x, 0) = −

Ec
4

√
πc
n−1∑

i=1

D1i

(2.28)

where the following integral property of the Chebyshev polynomial is used

1

π

1∫

−1

1

t̃− x̃
Ti(t̃)√
1− t̃2

dt = − |x̃|
x̃
√
x̃2 − 1

(
x̃− |x̃|

x̃

√
x̃2 − 1

)i
|x̃| > 1 (2.29)

The definition of fracture mode mixity is

ψ = arctan
K2(c)

K1(c)
(2.30)

The energy release rate for crack propagation at the crack tip can then be calculated by using
the crack closure concept as

G(c) =
1

Ec
[K21 (c) +K

2
2 (c)] (2.31)

3. Numerical results and discussions

The influence of elastic property and thickness of the generalized nonhomogeneous interlayer
on the SIFs is investigated in numerical examples. The material combination used is as follows
(Delale and Erdogan, 1988)

E1 = 20.685 · 1010
N

m2
ν1 = 0.3

E2 = 6.895 · 1010
N

m2
ν1 = 0.3

(3.1)

Poisson’s ratio of the adhesive material is νc = 0.3 since it has very little effect on the SIFs.
Without loss of any generality, we set

p(x) = p0 q(x) = q0 (3.2)

in the following numerical analysis. It is noted that the developed model for Griffith crack
problems in bonded dissimilar elastic half-planes can be reduced to the interfacial region model
(Delale and Erdogan, 1988) and the classical interface crack model (Williams, 1959) if the elastic
modulus of the adhesive material is given as Ec = E1(E2/E1)

h1/h and the thickness h → 0,
respectively. To verify validity of the presented theoretical model, the normalized SIFs for a
Griffith crack with the thickness ratio h1/h = 0.5 are given in Table 1, and the corresponding
results calculated by Delale and Erdogan (1988) are also listed. The results show that the present
scheme achieves a good agreement of the accuracy.
Both Figs. 3 and 4 plot the influence of the elastic modulus of the adhesive material and

thickness ratio h1/c on the normalized SIFs at the crack tip with K0 = πc
√
p20 + q

2
0, for different

combinations of p(x) and q(x). It is found that pure far-field uniform tension can produce mode II
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Table 1. Normalized SIFs calculated based on the generalized nonhomogeneous interlayer model
and the interfacial region model for h1/h = 0.5

c/h
Delale and Erdogan (1988) Present results

K1(c)/(p0
√
πc) K2(c)/(p0

√
πc) K1(c)/(p0

√
πc) K2(c)/(p0

√
πc)

0.1 1.004 0.023 1.0041 0.0257

0.25 1.014 0.058 1.0141 0.0584

0.5 1.026 0.092 1.0263 0.0924

1 1.036 0.127 1.0360 0.1223

5 1.046 0.169 1.0452 0.1661

SIF and a pure far-field uniform shear loading can also produce mode I SIF at the crack tip based
on the generalized nonhomogeneous interlayer model. This behavior is similar to the classical
interface crack problem. In addition, it may observed that the normalized SIFs tend to increase
as the elastic modulus of the adhesive material increases, and the thickness ratio h1/c has a very
significant effect on the crack-tip stress fields especially for small values of h1/c.

Fig. 3. Effect of the elastic modulus of the adhesive material on normalized (a) mode I and (b) mode II
SIFs, with p(x) = p0, and q(x) = 0

Fig. 4. Effect of the elastic modulus of the adhesive material on normalized (a) mode I and (b) mode II
SIFs, with p(x) = 0, and q(x) = q0

It is worth noting that the developed theoretical model introduces three new parameters,
namely h1, h2 and Ec, which have clear physical significance and can be measured. The singu-
larity obtained based on the classical interface crack model may result in a complex number (as
shown in Eq. (3.3)) and lead to stress oscillations and displacement interference at the crack
tips. However, the energy release rate is largely uninfluenced and has great practical guidance for
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the criteria of crack propagation. To better understand the numerical results discussed below,
it may be worthwhile to recall the crack-tip fields in the classical interface fracture mechanics.
The SIFs at crack tip are given as (Sun and Jih, 1987)

K1(c) + iK2(c) = (p0 + iq0)
√
πc(1 + 2iε)(2c)−iε (3.3)

where

ε =
1

2π
ln
1− β
1 + β

β =
µ2(κ1 − 1)− µ1(κ2 − 1)
µ2(κ1 + 1) + µ1(κ2 + 1)

κj = 3− 4νj µj =
Ej

2(1 + νj)
j = 1, 2

(3.4)

The energy release rate for crack propagation in the interface is (Malyshev and Salganik, 1965)

G(c) =
1− β2
E∗
[K21 (c) +K

2
2 (c)] (3.5)

with 1/E∗ = (1/E1 +1/E2)/2, and Ej = Ej/(1− ν2j ) for plane strain, Ej = Ej for plane stress.
The SIFs obtained by Eqs. (2.28) cannot be directly compared to those calculated using

the classical interface crack approach due to different singularities at the crack tips. However,
the energy release rates calculated based on the developed model can also offer an important
reference, similar to the classical interface crack model. The elastic modulus Ec of the adhesive
should be predetermined in real adhesively bonded components when the developed model in
this paper is used. On the other hand, if Ec is regarded as a more generalized parameter that
depends only on the physical properties of bonded materials, the applicability of the model may
be broader. Furthermore, the fracture criteria based on the energy release rates in the classical
interface crack problems agree well with the experimental results. Therefore, the elastic modulus
of the adhesive material can be determined as

Ec =
E∗

1− β2 (3.6)

by comparing with Eqs. (2.31) and (3.5). Figure 5 shows the influence of h1/c and Ec on the
normalized energy release rates G/G0, where G0 = 10

−10(p20+ q
2
0)c. It can be seen that values of

G/G0 obtained based on both models have little difference for the pure tension case when Eq.
(3.6) holds, especially for small values of h1/c.

Fig. 5. Effect of the length ratio h1/c between the generalized nonhomogeneous interlayer and crack on
the normalized energy release rate

The influence of loading ratio q0/p0 for different thickness ratios of the interlayer h1/h on
the normalized SIFs, mode mixity and normalized energy release rate are plotted in Fig. 6 with



A Griffith crack model in a generalized nonhomogeneous interlayer... 505

Ec = E
∗/(1−β2). The results indicate that the mode II SIF K2/K0 and mode mixity ψ increase,

while mode I SIFK1/K0 decreases with an increasing value of q0/p0. These tendencies are similar
to the experimental results of Liechti and Chai (1992). From Fig. 6d, we can see that differences
in the energy release rate G/G0 between the generalized nonhomogeneous interlayer model and
classical interface crack model are minimal when the thickness ratio of the interlayer is 0.75.
Moreover, these differences can be further significantly reduced by selecting an appropriate value
of h1/h between 0.5 and 0.75.

Fig. 6. Effect of the loading ratio q0/p0 on (a) normalized mode I SIF, (b) normalized mode II SIF,
(c) mode mixity, and (d) normalized energy release rate

Finally, it should be noted that dimensions of SIFs of the classical interface crack model given
by Eq. (3.3) depend on a complex factor iε, hence, it is challenging to employ SIFs to develop a
suitable fracture criterion for interface crack problems. However, the SIFs determined using Eqs.
(2.28) overcome this limitation and can be used to establish the SIF-based fracture criterion.
A quasi mode I (or quasi mode II) crack can be defined when the crack is subjected to simple
tension (or pure shear) at a remote distance since the singular crack tip field is dominated by
mode I (or mode II) fracture. Therefore, the SIF-based fracture criteria for quasi mode I and II
cracks respectively take the form

K1 = K1C K2 = K2C (3.7)

where K1C and K2C are the critical SIFs to be determined by experiments. For the mixed mode
crack, the criterion may be taken in the elliptical form as

( K1
K1C

)2
+
( K2
K2C

)2
= 1 (3.8)
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4. Conclusions

This paper proposes a Griffith crack model for two bonded dissimilar homogeneous isotropic
elastic half-planes, taking into account roughness at each material surface and the effect of the
adhesive material. A generalized nonhomogeneous interlayer is developed to model the adhesive
interface, where it is assumed that all material properties vary continuously between those of
the bonded materials and the adhesive material, and depend only on exponential functions of
the coordinate y (perpendicular to the interface). The Griffith crack problem is then reduced
to a set of singular integral equations which can be solved numerically. The influence of elastic
property and thickness of the interlayer on mode I and II SIFs, mode mixity and energy re-
lease rate is studied through numerical results. The applicability of the developed crack model
with the generalized nonhomogeneous interlayer is also investigated by comparing it with the
classical interface crack model. It is found that the energy release rates calculated by the two
models are very close when the elastic modulus and geometric dimensions of the generalized
nonhomogeneous interlayer are appropriately selected.
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